
www.manaraa.com

Selection of Views to Materialize in a DataWarehouseHimanshu GuptaDepartment of Computer ScienceStanford Universityhgupta@cs.stanford.eduAbstract. A data warehouse stores materialized views of data from oneor more sources, with the purpose of e�ciently implementing decision-support or OLAP queries. One of the most important decisions in design-ing a data warehouse is the selection of materialized views to be main-tained at the warehouse. The goal is to select an appropriate set of viewsthat minimizes total query response time and the cost of maintaining theselected views, given a limited amount of resource, e.g., materializationtime, storage space etc.In this article, we develop a theoretical framework for the general prob-lem of selection of views in a data warehouse. We present competitivepolynomial-time heuristics for selection of views to optimize total queryresponse time, for some important special cases of the general data ware-house scenario, viz.: (i) an AND view graph, where each query/view hasa unique evaluation, and (ii) an OR view graph, in which any view can becomputed from any one of its related views, e.g., data cubes. We extendthe algorithms to the case when there is a set of indexes associated witheach view. Finally, we extend our heuristic to the most general case ofAND-OR view graphs.1 IntroductionA data warehouse is a repository of integrated information available for queryingand analysis [IK93, Wid95]. Figure 1 illustrates the architecture of a typicalwarehouse [WGL+96]. The information stored at the warehouse is in the form ofviews, referred to as materialized views, derived from the data in the sources. Inorder to keep a materialized view consistent with the data at sources, the viewhas to be incrementally maintained [ZGMHW95, GM95]. This maintenance ofviews incurs what is known as view maintenance or update costs.In this paper, we concentrate on the problem of selecting an appropriate setof materialized views, one of the most important design decisions in designing adata warehouse. Given some storage space constraint, the problem is to selecta set of derived views to minimize total query response time and the cost ofmaintaining the selected views. We refer to this problem as the view-selectionproblem.Related work on this problem has been as follows. [HRU96] presents andanalyzes algorithms for selection of views in the special case of \data cubes."
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Fig. 1. A typical data warehouse architectureGupta et al. in [GHRU96] extend their result to selection of views and indexes indata cubes. Both these works ignore update costs. [RSS96] looks at the problemof augmenting a given set of materialized views with an additional set of viewsthat may reduce the total maintenance cost.The rest of the paper is organized as follows. In the next section, we developa theoretical framework for the view-selection problem. In the following twosections, we present and analyze heuristics for some special cases. In Section 5, wepresent an algorithm for the general view-selection problem in a data warehouse.Finally, we conclude in Section 6.2 View-Selection Problem Formulation2.1 AND-OR View GraphsIn this subsection, we develop a notion of an AND-OR view graph, which is oneof the inputs to the view-selection problem. We start by de�ning the notions ofexpression DAGs for queries or views.De�nition 2.1 (Expression A-DAG) An expression A-DAG (AND-DAG) fora query or a view V is a directed acyclic graph having the base relations as\sinks" (no outgoing edges) and the node V as a \source" (no incoming edges).If a node/view u has outgoing edges to nodes v1; v2; : : : ; vk, then all of the viewsv1; v2; : : : ; vk are required to compute u and this dependence is indicated bydrawing a semicircle, called anAND arc, through the edges (u; v1); (u; v2); : : : ; (u; vk).Such an AND arc has an operator1 and a cost associated with it, which is thecost incurred during the computation of u from v1; v2; : : : ; vk.The evaluation cost of a node u in an expression A-DAG is the sum of thecosts associated with each of its descendant's AND arc. 21 The operator associated with the AND arc is actually a k-ary function involvingoperations like join, union, aggregation etc.
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(a) (b)Fig. 2. a) An expression A-DAG, b) An expression AO-DAGDe�nition 2.2 (Expression AO-DAG) An expression AO-DAG for a viewor a query V is a directed acyclic graph with V as a source and the base relationsas sinks. Each nonsink node has associated with it one or more AND arcs, eachbinding a subset of its outgoing edges. As in the previous de�nition, each ANDarc has an operator and a cost associated with it. More than one AND arc at anode depicts multiple ways of computing that node. 2De�nition 2.3 (AND-OR View Graph) A graph G is called an AND-ORview graph for the views (or queries) V1; V2; : : : ; Vk if for each Vi, there is asubgraph Gi in G which is an expression AO-DAG for Vi. Each node u in anAND-OR view graph has the following parameters associated with it: fu (fre-quency of the queries on u), Su (space occupied by u), and gu (frequency ofupdates on u). For example, the graph in Figure 2(b) is an AND-OR view graphfor any subset of the views a through f . 2Note that in an AND-OR view graph, if a view u can be computed from theviews v; u1; u2; : : : ; uk and the view v can be computed from v1; v2; : : : ; vl; thenu can also be computed from u1; u2; : : : ; uk; v1; v2; : : : ; vl.2.2 Constructing an AND-OR View GraphGiven a set of queries Q1; Q2; : : : ; Qk to be supported at a warehouse, we con-struct an AND-OR view graph for the queries as follows. We �rst construct anexpression-AO DAG Di for each query Qi in the set. An AND-OR view graphG for the set of queries can then be constructed by \merging" the expressionAO-DAGs D1; D2; : : : ; Dk. Each node in the AND-OR view graph G will rep-resent a view that could be selected for materialization, and these are the onlyviews considered for materialization.For a query Qi we construct its expression AO-DAGDi to consist of alternate\useful" ways of evaluating Qi from the given base relations, in the presence ofother queries/views. Roussopoulos in [Rou82] considers exactly this problem.The objective of his analysis is to identify all possible (useful) ways to producethe result of a view, given other view de�nitions and base relations.
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2.3 The View-Selection ProblemGiven an AND-OR view graph G and a quantity S (available space), the view-selection problem is to select a set of views M , a subset of the nodes in G, thatminimizes the sum of total query response time and total maintenance cost,under the constraint that the total space occupied by M is less than S.More formally, let Q(u;M ) denote the cost of answering a query u (also anode of G) using the set M of materialized views in the given view graph G.Q(u;M ) is the evaluation cost of the cheapest embedded expression A-DAGfor u in G whose sinks belong to the set M [ L, where L is the set of sinksin G. Here, without loss of generality, we have assumed that the sinks in Gare always available for computation as they represent the base tables at thesource(s). Thus, Q(u; �) is the cost of answering the query on u directly fromthe source(s). Let U (u;M ) be the maintenance cost for the view u in the presenceof the set of materialized views M and the set of sinks, L.So, given an AND-OR view graph G and a quantity S, we wish to select aset of views/nodes M = fV1; V2; : : : ; Vmg, that minimizes � (G;M ), where� (G;M ) = kXi=1 fQiQ(Qi;M ) + mXi=1 gViU (Vi;M );under the constraint that Pv2M Sv � S.The view-selection problem is NP-hard even for the special case of an AND-OR graph where each AND arc binds at most one edge, and when the updatefrequencies are zero. There is a straightforward reduction from minimum setcover.2.4 Bene�t of a Set of Selected ViewsLet C be an arbitrary set of views in a view graph G. The bene�t of C withrespect to M , an already selected set of views, is denoted by B(C;M ) and isde�ned as � (G;M )� � (G;M [C), where � is the function de�ned above. Thebene�t of C per unit space with respect to M is B(C;M )=S(C), where S(C) isthe space occupied by the views in C. Also, B(C; �) is called the absolute bene�tof the set C.Monotonicity Property The bene�t function B is said to satisfy themonotonicity property forM with respect to disjoint sets (of views) O1; O2; : : : ; Omif B(O1 [O2 : : :[Om;M ) �Pi=mi=1 B(Oi;M ).The monotonicity property of the bene�t function is important for the greedyheuristics to deliver competitive (within a constant factor of optimal) solutions.For a given instance of AND-OR view graph, if the optimal solution O can bepartitioned into disjoint subsets of views O1; O2; : : : ; Om such that the bene�tfunction satis�es the monotonicity property w.r.t.O1; O2; : : : ; Om, then we guidethe greedy heuristic to select, at each stage, an optimal set (of views) of typethat includes Oi for all i � m. Such a greedy heuristic is guaranteed to deliver asolution whose bene�t is at least 63% of the optimal bene�t, as we show later.
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3 AND View GraphIn this section we consider a special case of the view-selection problem in AND-OR view graphs. Here, we assume that each AND arc binds all the outgoingedges from a node. This case depicts the simplied scenario where each view hasa unique way of being computed. We call such a graph G an AND view graph,where a node can be computed from all of its children. As before, each AND archas an operator and a cost associated with it. An AND view graph for a set ofqueries is just a \merging" of the expression A-DAGs of the queries.3.1 MotivationThe general view-selection problem can be approximated by this simpli�ed prob-lem of selecting views in an AND view graph. Given a set of queries supported atthe warehouse, instead of contructing an AND-OR view graph as in Section 2.2,we could run a multiple-query optimizer [Sel88, CM82] to generate a global plan,which is essentially an AND view graph for the queries. Such a global plan takesadvantage of the common subexpressions among the queries.3.2 Selection of Views in an AND View GraphIn this subsection, we present heuristics for solving the view-selection problemin AND view graphs without update costs. Later, we extend it to a special caseof AND view graphs with update costs. We note here that the view-selectionproblem in AND view graphs is not known to be NP-complete.Problem: Given an AND view graph G without updates and a quantity S, �nda set of views M that minimizes the quantity � (G;M ), under the constraint thatthe total space occupied by the views in M is at most S.Algorithm 3.1 Greedy AlgorithmGiven: G, an AND-OR view graph, and S, the space constraint.BEGINM = �; /� M = set of structures selected so far. �/while (S(M ) < S)Let C be the view which has the maximum bene�t per unit spacewith respect to M .M = M [C;end while;return M;END.Greedy Algorithm We present a simple greedy heuristic for selecting views.At each stage, we select a view which has the maximum bene�t per unit spaceat that stage. See Algorithm 3.1. The running time of the greedy algorithm isO(kn2), where n is the number of nodes in the graph and k is the number ofstages used by the algorithm.
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Observation 1 In an AND view graph without updates, the bene�t function Bsatis�es the monotonicity property for any M with respect to arbitrary set ofviews O1; O2; : : : ; Om.Theorem 3.1 For an AND view graph G without updates and a quantity S, thegreedy algorithm produces a solution M that uses at most S + r units of space,where r is the size of the largest view in G. Also, the absolute bene�t of M is atleast (1� 1=e) times the optimal bene�t achievable using as much space as thatused by M .Proof. It is easy to see that the space used by the greedy algorithm solution,S(M ), is at most S + r units. Let k = S(M ). Let the optimal solution using kunits of space be O and the absolute bene�t of O be B.Consider a stage at which the greedy algorithm has already chosen a set Gloccupying l units of space with \incremental" bene�ts a1; a2; : : : ; al. The absolutebene�t of Gl is thus Pli=1 ai. Surely the absolute bene�t of the set O [Gl is atleast B. Therefore, the bene�t of the set O with respect to Gl; B(O;Gl), is atleast B �Pli=1 ai.Using Observation 1, it is easy to show by contradiction that there exists aview Oi in O such that B(Oi; Gl)=jOij � B(O;Gl)=k. The bene�t per unit spacewith respect to Gl of the set C selected by the algorithm is at least that of Oi,which is at least (B �Pli=1 ai)=k. Distributing the bene�t of C over each of itsunit spaces equally (for the purpose of analysis), we get al+j � (B�Pli=1 ai)=k;for 0 < j � S(C). As this is true for each set C selected at any stage, we havethe set of equations viz. B � kaj +Pj�1i=1 ai; for 0 < j � k:Multiplying the jth equation by (k�1k )k�j and adding all the equations, weget A=B � 1� (k�1k )k � 1� 1=e, where A(=Pki=1 ai) is the absolute bene�t ofM .Greedy-Interchange Algorithm We present another heuristic called the\greedy-interchange" algorithm which starts with the solution produced by thegreedy algorithm (Algorithm 3.1) and then improves the solution by interchang-ing a view already selected with some view not selected.2 It iteratively performssuch interchanging until the solution cannot be improved any further by aninterchange. See Algorithm 3.2.Unfortunately, not much can be proved about the competitiveness of the solu-tion produced by the greedy interchange algorithm except that it is obviously atleast as good as the greedy algorithm. Moreover, the running time of the greedyinterchange algorithm is unbounded. We believe that the greedy interchangealgorithm in practice would perform much better than the greedy algorithm.2 When views occupy di�erent amounts of space, more than one view may have to beadded/removed.
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Algorithm 3.2 Greedy-Interchange AlgorithmGiven: G, an AND-OR view graph, and S, the space constraint.Assume that all views occupy the same amount of space.BEGINRun the greedy algorithm and let M be the solution returned.repeatLet (C1; C2) be a pair of views such that C1 2M and the absolutebene�t of (M � C1) [C2 is greater than that of M .M = (M �C1) [C2;until (no such pair (C1; C2) exists);returnM;END.3.3 Incorporating Update CostsUnfortunately, the bene�t function may not satisfy the monotonicity propertywhen there are update costs. To see this informally, consider a view C1 whichhelps in maintaining another view C2. Hence, the bene�t of C1 [ C2 might bemore than the sum of their bene�ts individually. However, the bene�t functiondoes satisfy the monotonicity property for a special case as shown in the followinglemma.Lemma1. In an AND view graph, the bene�t function B satis�es the mono-tonicity property for any M with respect to sets consisting of single views, if theupdate frequency gv at any view v is less than its query frequency fv.Proof. It su�ces to prove that B(v; �) � B(v;M ) for any view v and a set ofviews M .Let A be the set of (not necessarily proper) ancestors of v in the AND viewgraph G, and let MA = A \M . Let D be the set of those ancestors of v whichdo not have any descendants in the set M .We haveB(v; �) =Px2A fx(Q(x; �)�Q(x; v))�gvU (v; �). Note that,Q(x; �)�Q(x; v) = Q(v; �) in an AND view graph for any ancestor x of v. Therefore, weget B(v; �) =Px2A fxQ(v; �)� gvU (v; �).For B(v;M ), when M has already been selected, v reduces the query costsof only the nodes in D. Therefore, B(v;M ) = Px2D fx(Q(x;M ) � Q(x;M [fvg))� gvU (v;M ) +Px2MA gx(U (x;M )� U (x;M [ fvg)).The last term on the right hand side is due to reduction in the update costsof nodes in MA as a result of the inclusion of v.As U (x;M ) � U (x;M [ fvg) � Q(v;M );� Q(v; �) for any x 2 MA, and(Q(x;M )�Q(x;M[fvg)) = Q(v;M ) for x 2 D, we getB(v;M ) �Px2D Q(v;M )�gvU (v;M ) +Px2MA Q(v; �).LetMD be the set of descendants of v inM and letQ(MD; �) =Px2MD Q(x; �).Using U (v; �) � U (v;M ) � U (MD; �) � Q(MD ; �), and MA [D [ fvg � A, weget B(v; �)�B(v;M ) �Px2D fx(Q(v; �)�Q(v;M ))+fvQ(v; �)�gv(Q(MD ; �).
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Now as Q(v; �)� Q(v;M ) = Q(MD; �); we get B(v; �) � B(v;M ) � 0.Theorem 3.2 Consider an AND view graph G, where for any view the updatefrequency is less than its query frequency. For such a graph G, the greedy algo-rithm produces a solution M whose absolute bene�t is at least (1 � 1=e) timesthe optimal bene�t achievable using as much space as that used by M .3.4 AND View Graph with IndexesIn this section, we generalize the view-selection problem in an AND view graphby introducing indexes for each node/view. In the presence of indexes the cost ofcomputation depends upon the indexes being used to execute the operation. Asindexes are built upon their corresponding views, an index can be materializedonly if its corresponding view has already been materialized. Thus, selecting anindex without its view does not have any bene�t and hence, the bene�t functionmay not satisfy the monotonicity property for arbitrary sets of structures.3 Weassume that if an index is not materialized, then it is never \computed" whileanswering user queries.We need to introduce a slightly di�erent cost model for the AND view graphswith indexes. In an AND view graph with indexes, there may be multiple edgesfrom a node u to v, possibly one for each index of v. Instead of associating costswith the arcs, we associate a label (i; ti) with each edge from u to v. The costti(i > 0)4 can be thought of as the cost incurred in accessing the relation (asmany times as required to compute u) at v using its ith index. In addition, wehave a k-ary monotonically increasing cost function associated with every arcthat binds k edges.Consider a node u which has k outgoing edges to nodes v1; v2; : : : ; vk andlet the k-ary cost function associated with the arc binding all these outgoingedges be f . Then, the cost of computing u from all its children v1; v2; : : : ; vkusing their i1; i2; : : : ; ithk indexes respectively is f(ti1 ; ti2; : : : ; tik), where there isan edge from u to vj , for 0 < j � k, with a label (ij ; tij ).Problem: Given a quantity S and an AND view graph G with indexes. Associ-ated with each edge is a label (i; ti); i � 0, and there is a cost function associatedwith each arc, as described above. Assume that there are no updates.Find a set of structures M that minimizes the quantity � (G;M ), under theconstraint that the total space occupied by the structures in M is at most S.Inner-Level Greedy Algorithm The inner-level greedy algorithm works instages. At each stage, it selects a subset C, which consists either of a view andsome of its indexes selected in a greedy manner, or a single index whose viewhas already been selected in one of the previous stages.3 A structure is a view or an index.4 When i = 0; t0 is the cost in accessing v without any of its indexes.
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Algorithm 3.3 Inner-Level Greedy AlgorithmGiven: G, a view graph with indexes, and S, the space constraint.BEGINM = �; /� M = Set of structures selected so far �/while (S(M ) < S)C = �; /� Best set containing a view and some of its indexes �/for each view vi not in MIG = fvig; /� IG = Set of vi and some of its indexes selected �//� in a greedy manner �/while (S(IG) < S) /� Construct IG �/Let Iic be the index of vi whose bene�t per unit space w.r.t.(M [ IG) is maximum.IG = IG [ Iic;end while;if (B(IG;M )=S(IG) > B(C;M )=jCj) or C = �C = IG;end for;for each index Iij such that its view vi 2Mif B(Iij ;M )=S(Iij) > B(C;M )=S(C)C = fIijg;end for;M = M [C;end while;returnM ;END.Each stage can be thought of as consisting of two phases. In the �rst phase,for each view vi we construct a set IGi which initially contains only the view.Then, one by one its indexes are added to IGi in the order of their incrementalbene�ts until the bene�t per unit space of IGi with respect to M , the set ofstructures selected till this stage, reaches its maximum. That IGi having themaximumbene�t per unit space with respect toM is chosen as C. In the secondphase, an index whose bene�t per unit space is the maximum with respect toM is selected. The bene�t per unit space of the selected index is compared withthat of C, and the better one is selected for addition to M . See Algorithm 3.3.The running time of the inner-level greedy algorithm is O(k2m2), where mis the total number of structures in the given AND view graph and k is themaximum number of structures that can �t in S units of space, which in theworst case is S.Observation 2 In an AND view graph with indexes and without updates, thebene�t function B satis�es the monotonicity property for any M with respect toarbitrary sets of structures O1; O2; : : : ; Om, where each Oi consists of a view andsome of its indexes.
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Theorem 3.3 For an AND view graph with indexes and a given quantity S, theinner-level greedy algorithm (Algorithm 3.3) produces a solution M that uses atmost 2S units of space. Also, the absolute bene�t of M is at least (1�1=e0:63) =0:467 of the optimal bene�t achievable using as much space as that used by M ,assuming that no structure occupies more than S units of space.Proof. It is easy to see that S(M ) � 2S. Let k = jM j. Let the optimal solutionbe O, such that S(O) = k and the absolute bene�t of O be B.Consider a stage at which the Inner-level greedy algorithmhas already chosena set Gl occupying l units of space with \incremental" bene�ts a1; a2; a3:::::al.The absolute bene�t of the set O[Gl is at least B. Therefore, the bene�t of theset O with respect to Gl, B(O;Gl), is at least B �Pli=1 ai.If O contains m views, it can be split into m disjoint sets O1; O2; : : : ; Om,such that each Oi consists of a view and its indexes in O. By the monotonic-ity property of B w.r.t. the sets O1; : : : ; Om, B(O;Gl) �Pmi=1B(Oi; Gl). Now,it is easy to show by contradiction that there exists at least one Oi such thatB(Oi; Gl)=S(Oi) � B(O;Gl)=k. The bene�t per unit space of the set C, se-lected by the Inner-level greedy algorithm at this stage, is at least 0.63 timesB(Oi; Gl)=S(Oi). This follows from the result of Theorem 4.1 on the perfor-mance guarantee of the simple greedy algorithm (skipping some tedious detailshere.) Let k0 = 0:63. Distributing the bene�t of C over each of its unit spacesequally (for the purposes of analysis), we get al+j � k0(B �Pli=1 ai)=k; for0 � j < S(C). As this is true for each set C selected at any stage, we have theset of equations viz. B � kk0 aj +Pj�1i=1 ai; for 0 < j � k.Let k00 = k=k0. Multiplying the jth equation by (k00�1k00 )k�j and adding all theequations, we get A=B � 1 � (k00�1k00 )k � 1 � (k00�1k00 )k00k0 � 1 � 1=e0:63, whereA(=Pki=1 ai) is the absolute bene�t of M .4 OR View GraphIn this section we consider those AND-OR view graphs in which each AND arcbinds exactly one edge. We call such a AND-OR view graph G an OR viewgraph, where a node can be computed from any one of its children.4.1 MotivationA speci�c model of a data warehouse is a data cube. Data cubes are databaseswhere a critical value, e.g., sales, is organized by several dimensions, for ex-ample, sales of automobiles organized by model, color, etc. Queries in such asystem are of the usually ask for a breakdown of sales by some of the dimen-sions. Therefore, we can associate an aggregate view, called a cube, V� with eachsubset � of the dimensions. A view V� is essentially a result of a \Select �,Sum(sales); group by �" SQL query over the base table. An aggregate view V�can be computed from a view V� i� � � �.In the data cube, the AND-OR view graph is an OR view graph, as for eachview there are zero or more ways to construct it from other views, but each way
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involves only one other view. Hence, all the results developed in this section forOR view graphs apply to data cubes. As OLAP databases have very few or noupdates, we assume that there are no update costs throughout this section.4.2 View Selection in an OR View GraphIn this subsection, we present algorithms for solving the view-selection problemfor OR view graphs without update costs. This generalizes the problem consid-ered by Harinarayan et al. in [HRU96] for selection of cubes in a data cube. Weprove that the greedy algorithm (Algorithm 3.1) proposed by them performswith the same performance guarantee even in this setting of an OR view graph.A variant of this problem known as the K-median has also been studied in adi�erent context of facility location [CFN77].Problem: Given an OR view graph G and a quantity S, �nd a set of views Mthat minimizes the quantity � (G;M ), under the constraint that the total spaceoccupied by the views in M is at most S. Assume that there are no updates.Observation 3 In an OR view graph without updates, the bene�t function Bsatis�es the monotonicity property for any M with respect to arbitrary sets ofviews O1; O2; : : : ; Om.Theorem 4.1 For an OR view graph G without updates and a given quantityS, the greedy algorithm produces a solution M that uses at most S + r units ofspace, where r is the size of the largest view in G. Also, the absolute bene�t ofM is at least (1� 1=e) times the optimal bene�t achievable using as much spaceas that used by M .Recently, Feige in [Fei96] showed that the minimum set-cover problem can-not be approximated within a factor of (1 � o(1)) lnn, where n is the numberof elements, using a polynomial time algorithm unless P = NP . There is a verynatural reduction of the minimum set-cover problem to our problem of viewselection in OR view graphs. The reduction shows that no polynomial time algo-rithm for the view-selection problem in OR view graphs can guarantee a solutionof better than 63% for all inputs unless P = NP [Che96].Greedy Interchange Algorithm Cornuejols et al. in [CFN77] show for theirsimilar facility location problem through extensive experiments that in mostcases the running time of greedy interchange is a little less than 1.5 times therunning time of the greedy algorithm, and that it returns a much better solutionthan that returned by the greedy algorithm.4.3 OR view graph with IndexesAs in the case of AND view graphs, we generalize the view-selection problemin OR view graphs by introducing indexes for each node/view. In an OR viewgraph G with indexes, each edge from a node u to v has a label (i; ti) associated,where ti(i > 0) is the cost of computing u from v using its ith index and t0 isthe cost of computing u from just v.
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Problem: Given a quantity S and an OR view graph G with indexes, �nd a setof structures M that minimizes the quantity � (G;M ), under the constraint thatthe total space occupied by the structures (views and indexes) in M is at mostS. Assume that there are no updates.Observation 4 In an OR view graph with indexes and without updates, thebene�t function B satis�es the monotonicity property for any M with respect todisjoint sets of structures O1; O2; : : : ; Om, where each Oi consists of a view andsome of its indexes.Theorem 4.2 The Inner-level greedy algorithm produces a solution M that usesat most 2S units of space. Also, the absolute bene�t ofM is at least (1�1=e0:63) =0:467 of the optimal bene�t achievable using as much space as that used by M ,assuming that no structure occupies more than S units of space.5 View Selection in AND-OR View GraphsIn this section, we try to generalize our results developed in the previous sectionsto the view-selection problem in general AND-OR view graphs. We presenthere an AO-greedy algorithm that could take exponential time in the worstcase, but has a performance guarantee of 63%. We also present a multi-levelgreedy algorithm which is a generalization of the inner-level greedy algrorithm(Algorithm 3.3). We give a di�erent formulation of the view-selection problemin AND-OR graphs, for the sake of simplifying the description of the algorithm.De�nition 5.1 (Query-View Graph) A query-view graph G is a bipartitegraph (Q[ �; E), where Q is the set of queries to be supported at the warehouseand � is a subset of the powerset of V , the set of views. An edge (q; �) is inE i� the query q can be answered using the views in the set �, and the costassociated with the edge is the cost incurred in answering q using �. There isalso a frequency fq associated with each query q 2 Q. We assume that there is aset � 2 � (the set of base tables) such that (q; �) 2 E for all q 2 Q.5 Note that anarbitrary AND-OR view graph can be converted into an equivalent query-viewgraph. 2Problem (View Selection in Query-View Graphs):Given a quantity S anda query-view graph G = (� [Q;E), select a set of views M � V that minimizesthe total query response time,6 under the constraint that the total space occu-pied by the views in M is at most S.5 A query-view graph can be looked upon as an OR graph, as a query q 2 Q can becomputed by any of the set of views � where (q; �) 2 E.6 Though we ignore update costs, it can be incorporated by adding possibly additionalnodes in � and additional edges in F� (de�ned later).
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5.1 AO-Greedy Algorithm for Query-View GraphsWe de�ne an intersection graph F� of � as a graph having � and D as its set ofvertices and edges respectively such that an edge (�; �) 2 D if and only if theset of views � and � intersect.The AO-greedy algorithm works in stages as follows. At each stage, the algo-rithm picks a connected subgraph H of F� whose corresponding set of views VH(union of the sets of views corresponding to the vertices of H) o�ers the maxi-mum bene�t per unit space at that stage. The set of views VH is then added tothe set of views already selected in previous stages. The algorithm halts whenthe space occupied by the selected views exceeds S.We omit the proof of the following theorem due to space constraints.Observation 5 An optimal solution O of the view-selection problem in query-view graph G is of the form O = [�2��, where � � �.Theorem 5.1 For a query-view graph without updates and a quantity S, theAO-greedy algorithm produces a solution M that uses at most 2S units of space.Also, the absolute bene�t of M is at least (1 � 1=e) times the optimal bene�tachievable using as much space as that used by M .For a query-view graph G = (� [Q;E) corresponding to an OR view graph,the AO-greedy algorithmbehaves exactly as the greedy algorithm (Algorithm 3.1),taking polynomial time for OR view graphs.5.2 Multi-level Greedy AlgorithmIn this section, we generalize the inner-level greedy algorithm (Algorithm 3.3) tomultiple inner-levels of greedy selection in query-view graphs. We try to modifythe AO-greedy algorithm for query-view graphs in an attempt to improve itsrunning time at the expense of its performance guarantee.Consider a query-view graph G = (Q [ �; E) and its intersection graph F�such that there is a view v where v 2 � for each node � in F� .7 If no such v exists,then run AO-greedy algorithm on G. Let � 0 be the set obtained by removing vfrom each element of � and F 0� be its corresponding intersection graph. We selecta set of views U whose bene�t per unit space is close to that of the optimal.Let F1; F2; : : : ; Fk be the connected components of F 0� . We select the setof views U in a greedy manner. Initially the set U contains just v. Then, ateach stage, we select a set of views J , corresponding to a subgraph in somecomponent Fi, that has the maximum bene�t per unit space. The set of viewsJ is then added to the set U being maintained. We continue adding views to Utill the total bene�t per unit space of U cannot be further improved.It is not di�cult to show that the bene�t per unit space of U at least 63% ofthe bene�t per unit space of VH , the set of views whose bene�t per unit space is7 The technique developed here can be easily generalized to the case when F� has l > 1connected components G1;G2; : : : ;Gl, each satisfying the property that for some vi,vi 2 � for each vertex � in Gi.
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the maximum among the connected subgraphs in F� . The algorithm continuesby interatively picking a new set U and adding it to the set of already selectedviews M , until the space occupied by M exceeds S.This algorithm could still take exponential time because of the need to con-sider all possible subgraphs of Fi. We could apply the above technique recursivelyfor the graphs Fi, selecting a set of views Ui whose bene�t is within 63% of thebene�t of an optimal set of views in Fi. Applying this technique recursively rtimes yields the r-level greedy algorithm. We omit the proof of the followingtheorem.Theorem 5.2 For a query-view graph G and a given quantity S, the r-levelgreedy algorithm delivers a solution M that uses at most 2S units of space. Also,the bene�t of M is at least 1� (1=e)0:63r of the optimal bene�t achievable usingas much space as that used by M , assuming that no view occupies more than Sunits of space. The r-level greedy algorithm takes O((kn)2r) time, excluding thetime taken at the �nal level. Here, k is the maximum number of views that can�t in S units of space.For a given instance one could estimate the value of r such that at the rthlevel the graphs Fi are small constant-size graphs. The last level would then takeonly a constant amount of time.For an OR view graph I with indexes, its equivalent query-view graph G =(� [ Q;E) is such that each element � 2 � consists of a single view and oneof its indexes.8 Hence, at the �rst stage itself, the graphs obtained consist ofnodes representing single indexes. For such a query-view graph, the 1-level innergreedy algorithm behaves exactly the same as the inner-level greedy algorithm(Algorithm 3.3) on OR view graphs with indexes.6 Conclusions and Future DirectionsIn this paper, we have developed a theoretical framework for the general prob-lem of selection of views in a data warehouse. We have presented competitivepolynomial-time heuristics for some important special cases of the problem thatoccur in practice. We have presented proofs showing that the algorithms areguaranteed to provide a solution that is within a constant factor of the optimal.There are still a lot of questions which remain unanswered and need consid-erable attention. Noteworthy among them are:1. Are there competitive polynomial-time heuristics for other special cases likeAND-OR trees or binary AND-OR view trees, even without updates or whenoptimizing just update costs? Are there heuristics which optimize total querybene�t under the constraint of total maintenance time ?2. Can we prove any negative results about the approximability of the view-selection problem?8 Under the assumption that an index is never computed to answer a query.
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